Analogs of GnRH-I and GnRH-II inhibit epidermal growth factor-induced signal transduction and resensitize resistant human breast cancer cells to 4OH-tamoxifen.
نویسندگان
چکیده
About 50-64% of human breast cancers express receptors for GnRH-I. Direct antiproliferative effects of analogs of GnRH-I on human breast cancer cell lines have been shown. They are at least in part mediated by antagonizing growth promoting effects of estradiol, epidermal growth factor (EGF) or insulin-like growth factor. Recently, expression of a putative receptor for GnRH-II in human tissues was demonstrated. Antiproliferative effects of GnRH-II in human endometrial and ovarian cancer cells were shown not to be mediated through the GnRH-I receptor. Now we demonstrate direct anti-proliferative effects of the GnRH-I analog Triptorelin and the GnRH-II analog [d-Lys(6)]GnRH-II in MCF-7 and T47D human breast cancer cells expressing GnRH-I receptors and putative GnRH-II receptors. Pretreatment with Triptorelin or [d-Lys(6)]GnRH-II blocked EGF-induced autophosphoryla-tion of EGF receptor and activation of mitogen-activated protein kinase (extracellular-signal-regulated kinase 1/2 (ERK1/2)) in these cells. In sublines of MCF-7 and T47D cells, which were developed to be resistant to 4OH-tamoxifen, HER-2/p185 was overexpressed. Pretreatment of these cell lines with Triptorelin or [d-Lys(6)]GnRH-II completely abolished resistance to 4OH-tamoxifen, assessed by 4OH-tamoxifen-induced apoptosis. Analogs of GnRH-I and GnRH-II counteract EGF-dependent signal transduction in human breast cancer cells with expression of receptors for GnRH-I and GnRH-II. Through this mechanism, they probably reverse acquired resistance to 4OH-tamoxifen mediated through overexpression or activation of receptors of the c-erbB family.
منابع مشابه
GnRH-II agonist [D-Lys6]GnRH-II inhibits the EGF-induced mitogenic signal transduction in human endometrial and ovarian cancer cells.
The majority of human endometrial and ovarian cancers express receptors for GnRH type I (GnRH-I). Their proliferation is time- and dose-dependently reduced by GnRH-I and its analogs. GnRH-I analogs activate a phosphotyrosine-phosphatase (PTP) and inhibit EGF-induced mitogenic signal transduction. Recently we found that GnRH type II (GnRH-II) and its agonist [D-Lys6]GnRH-II also have antiprolife...
متن کاملRole of gonadotropin-releasing hormone (GnRH) in ovarian cancer
The expression of GnRH (GnRH-I, LHRH) and its receptor as a part of an autocrine regulatory system of cell proliferation has been demonstrated in a number of human malignant tumors, including cancers of the ovary. The proliferation of human ovarian cancer cell lines is time- and dose-dependently reduced by GnRH and its superagonistic analogs. The classical GnRH receptor signal-transduction mech...
متن کاملGnRH-II antagonists induce apoptosis in human endometrial, ovarian, and breast cancer cells via activation of stress-induced MAPKs p38 and JNK and proapoptotic protein Bax.
Recently, we could show that gonadotropin-releasing hormone (GnRH)-II antagonists induce apoptosis in human endometrial, ovarian, and breast cancer cells in vitro and in vivo. In the present study, we have ascertained receptor binding and effects of GnRH-II antagonists on mitogenic signal transduction and on activation of proapoptotic protein Bax. The GnRH-II antagonists tested showed EC50 valu...
متن کاملGonadotropin-releasing hormone type II antagonists induce apoptotic cell death in human endometrial and ovarian cancer cells in vitro and in vivo.
In human endometrial and ovarian cancers, gonadotropin-releasing hormone type I (GnRH-I), GnRH-II, and their receptors are parts of a negative autocrine regulatory system of cell proliferation. Based on a tumor-specific signal transduction, GnRH-I and GnRH-II agonists inhibit the mitogenic signal transduction of growth factor receptors and related oncogene products associated with tyrosine kina...
متن کاملBiology of the gonadotropin-releasing hormone system in gynecological cancers.
The expression of GnRH and its receptor as a part of an autocrine regulatory system of cell proliferation has been demonstrated in a number of human malignant tumors, including cancers of the breast, ovary and endometrium. Dose-dependent antiproliferative effects of GnRH agonists in cell lines derived from these cancers have been observed by various investigators. GnRH antagonists also have mar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European journal of endocrinology
دوره 153 4 شماره
صفحات -
تاریخ انتشار 2005